lunes, 26 de julio de 2010

UNIDAD CUATRO

ANALISIS DE BIOMOLECULAS


CROMATOGRAFIAS
La cromatografia en capa fina se basa en la preparación de una capa, uniforme, de un absorbente mantenido sobre una placa, la cual puede ser de vidrio, aluminio u otro soporte. Los requisitos son un absorbente, placas , un dispositivo que mantenga las placas durante la extensión, otro para aplicar la capa de absorbente, y una cámara en la que se desarrollen las placas cubiertas.
La fase móvil es líquida y la fase estacionaria consiste en un sólido. La fase estacionaria será un componente polar y el eluyente será por lo general menos polar que la fase estacionaria, de forma que los componentes que se desplacen con mayor velocidad serán los menos polares.
Polaridad de los compuestos orgánicos en orden creciente:
hidrocarburos < olefinas < fluor < cloro < nitro < aldehído aldehído < ester < alcohol < cetonas < aminas < ácidos < amidas.

CROMATOGRAFIA DE AFINIDAD

La Cromatografía de Afinidad permite la separación de mezclas proteicas por su afinidad o capacidad de unión a un determinado ligando. En este caso, las proteínas que se retienen en la columna son aquellas que se unen específicamente a un ligando que previamente se ha unido covalentemente a la matriz de la columna. Después de que las proteínas que no se unen al ligando son lavadas o eluidas a través de la columna, la proteína de interés que ha quedado retenida en la columna se eluye o libera mediante el empleo de una solución que contiene bien ligando libre u otro compuesto que rompa la interacción entre el ligando y la proteína.


Cromatografía de afinidad : Se trata de un tipo especial de cromatografía de adsorción sólido-líquido en la que la sustancia de naturaleza bioquímica (anticuerpos, cofactores, inhibidores enzimáticos, lectinas y otras moléculas) denominadas ligandos de afinidad y enlazados químicamente en soportes sólidos adecuados, retienen a los solutos (analitos), también de naturaleza bioquímica, de manera reversible y selectiva. Las separaciones se basan en el acoplamiento ¨llave-cerradura¨ típico de la biología molecular.

CROMATOGRAFIA DE INTERCAMBIO IONICO
La Fase Estacionaria es una resina de intercambio iónico que contiene grupos cargados, teniendo la propiedad de separar especies ionizadas (Cationes o Aniones); la Fase Móvil es generalmente una solución amortiguadora de pH. En proteínas la cromatografía de intercambio iónico se basa en las diferencias en signo y magnitud de la carga eléctrica neta de las proteínas a un valor de pH determinado. La afinidad de cada proteína a los grupos cargados de la columna esta influenciada por el pH y por la concentración de iones en solución (concentración salina) que compiten con la proteína en la interacción con la matriz. La separación de la proteína de la matriz cargada puede obtenerse gradualmente cambiando el pH y/o la concentración salina de la fase móvil, de tal forma que se genere un gradiente de concentración.


CROMATOGRAFIA HPLC

Es una Cromatografía de alta presión es decir se aplica el flujo a presión (entre 1500 a 2200 psi). El tamaño de partícula es entre 3 y 10 micras, la longitud de la columna es entre 5 y 25 cm. y requiere de equipo sofisticado. Se pueden analizar muestras proteicas. La reducción del tiempo en que la sustancia se encuentra en el interior de la columna, limita el ensanchamiento por difusión de las bandas, aumentando por tanto la resolución. El sistema HPLC requiere una mezcladora de solventes, un inyector, y una bomba que inyecte el líquido a la columna. Generalmente las columnas de sílica requieren alta presión para que el flujo de líquido sea adecuado, la mezcladora se requiere para variar la proporción de solvente en la fase móvil y el inyector permite la aplicación de la muestra. A la salida de la columna se coloca un detector generalmente de absorción ultravioleta o de fluorescencia y si se desea recuperar las moléculas que eluyen de la columna, se requiere un colector. En los sistemas modernos el análisis de la información obtenida se realizan mediante una computadora acoplada al equipo; lo que permite estandarizar la cromatografía, identificar la naturaleza los picos eluídos y cuantificar su contenido. Los picos se relacionan según su "tiempo de retención" con estándares, que permiten identificar los aminoácidos presentes en la mezcla. La cantidad relativa de cada uno de ellos se determina calculando el área la curva del pico correspondiente.



CROMATOGRAFIA DE GASES ACOPLADA A MASAS

Se utiliza para la separación de sustancias gaseosas. La Fase Móvil es un Gas (llamado Gas Portador) y la Fase Estacionaria puede ser un sólido (Cromatografía Gas-Sólido) o una Película de líquido de alto punto de ebullición (Generalmente Polietilén-Glicol o Silicón) recubriendo un sólido inerte (Cromatografía Gas-Líquido). El cromatógrafo de gases esta constituido normalmente por un suministro y una entrada del gas portador, un puerto de inyección, una columna normalmente localizada en el interior de una cámara termostatizada (horno), un detector y un sistema computarizado para analizar, registrar e imprimir el cromatógrama. La muestra se introduce a través del sistema de inyección dentro de la columna que es el sitio donde ocurre la separación. La columna de aluminio, acero inoxidable, vidrio o teflón contiene la fase estacionaria sólida o líquida y esta sujeta a la superficie por un soporte que es generalmente de sílice. La fase móvil o gas portador transporta los componentes de la muestra a través de la columna, por esta razón debe ser inerte para evitar interacciones con la muestra o la fase estacionaria, y ser capaz de minimizar la difusión gaseosa. Al final de la columna existe el detector que permite la detección y cuantificación de las sustancias, midiendo conductividad térmica y electronegatividad de las sustancias eluídas. Se produce una señal tipo eléctrico, que posteriormente se amplifica por un registrador grafico o un integrador permitiendo indicar el momento en que salen de la columna los componentes. La salida de la sustancia se registra en un cromatógrama en forma de picos y se determinan medidas como la altura y el área del pico.



ESPECTROFOTOMETRIA
ESPECTROFOTOMETRIA
La espectrofotometría es el método de análisis óptico más usado en las investigaciones químicas y biológicas. El espectrofotómetro es un instrumento que permite comparar la radiación absorbida o transmitida por una solución que contiene una cantidad desconocida de soluto, y una que contiene una cantidad conocida de la misma sustancia.

ELISA
ELISA es el acrónimo de la descripción en ingles de una técnica de inmunoensayo: ("Enzyme-Linked ImmunoSorbent Assay" es decir en español Ensayo por inmunoabsorción ligado a enzimas) y que se basa en la detección de un antígeno inmovilizado sobre una fase sólida mediante anticuerpos que directa o indirectamente producen una reacción cuyo producto, por ejemplo un colorante, puede ser medido espectrofotométricamente. Este principio tiene muchas de las propiedades de un inmunoensayo ideal: es versátil, robusto, simple en su realización, emplea reactivos económicos y consigue, mediante el uso de la fase sólida, una separación fácil entre la fracción retenida y la fracción libre.
Además se han propuesto y desarrollado diferentes métodos de amplificación de la señal (luminiscentes, cascadas enzimáticas...) que han permitido elevar la sensibilidad de algunos ELISA a la obtenida en el RIA (radioinmunoensayo) hormonal.
Este método ha tenido una enorme aplicación en todos aquellos campos en los que se precisaba la cuantificación de productos mediante anticuerpos: diagnóstico clínico, detección viral, clasificación de anticuerpos en isotipos, búsqueda de anticuerpos monoclonales, etc..

Se han ensayado numerosas fases sólidas, desde los tubos de cristal de los orígenes a las actuales microplacas de 96 pocillos de plástico tratado para aumentar su capacidad de absorción (fenómeno de superficie) de moléculas y con fondos de pocillo ópticamente claros para poder realizar las medidas de densidad óptica en instrumentos específicos, espectrofotómetros de lectura de placas que han recibido el nombre de lectores ELISA. Actualmente se están desarrollando dispositivos de mayor capacidad, por ejemplo con 384 y 1536 pocillos, adecuados para los sistemas de 'screening' masivo de los sistemas robotizados (HTS, 'High-throughput system')
Los lectores ELISA son espectrofotómetros capaces de realizar lecturas seriadas de cada uno de los pocillos de la placa ELISA. A diferencia de un espectrofotómetro convencional, con capacidad de leer todas las longitudes de onda del ultravioleta y el visible de manera continua, los lectores de ELISA disponen de sistemas de filtros que sólo permiten la lectura de una o pocas longitudes de onda. Son la que se corresponden con las necesarias para determinar la densidad óptica de los cromógenos más comúnmente utilizados.
Fases de un ensayo ELISA
Las 4 fases de un ensayo ELISA son las siguientes:
Conjugación del anticuerpo o del antígeno con un enzima (peroxidasa, fosfatasa alcalina...). El anticuerpo conjugado a la enzima se emplea en los ensayos directos e indirectos, sandwich, etc. El antígeno marcado se emplea en ensayos de competición de antígeno.
Unión del antígeno (o del anticuerpo) a los pocillos. La unión de anticuerpos o antígenos se realiza con facilidad a la superficie de plásticos tratados que tienen gran afinidad por proteínas.
Formación de una o más capas de inmunocomplejos. En el caso del antígeno unido a la placa se puede detectar mediante un anticuerpo anti-antígeno marcado (ELISA directo) o empleando un anticuerpo primario anti-antígeno y un secundario anti primario marcado (ELISA indirecto). Este segundo método permite la amplificación de la señal al poderse unir uno o más anticuerpos secundarios a cada anticuerpo primario. En el caso del anticuerpo unido a la placa se incuba con una mezcla de antígeno y antígeno marcado. Se ensayan diferentes relaciones de antígeno frío frente a una cantidad fija de antígeno marcado. Es el ensayo de competición del antígeno.
Revelado de la reacción enzimática. Después de un lavado para eliminar todos las moléculas marcadas no fijadas en forma de inmunocomplejos se añade el sustrato enzimático en solución. Se deja reaccionar y se lee la densidad óptica (D.O.) mediante espectrofotometría.

CENTRIFUGACION

CENTRIFUGACION

La centrifugación es un método por el cual se pueden separar sólidos de líquidos de diferente densidad mediante una fuerza rotativa , la cual imprime a la mezcla con una fuerza mayor que la de la gravedad, provocando la sedimentación de los sólidos o de las partículas de mayor densidad. Este es uno de los principios en los que la densidad: Todas lículas, por posa, sectadas por cualquier y una extensa variedad de técnicas derivadas de esta. Donde la fuerza es mayor a la gravedad.
Fundamento teórico
El objetivo de la centrifugación es separar sólidos insolubles(de particulas muy pequeñas dificiles de sedimentar)de un liquido. Para ello, se aplica un fuerte campo centrífugo, con lo cual las partículas tenderán a desplazarse a través del medio en el que se encuentren con la aceleración G. E=velocidad angular2 x radio de giro.

CENTRIFUGACION DE GRADIENTE

La técnica de capacitación mediante centrifugación en gradiente permite separar espermatozoides por centrifugación a través de capas de un coloide. Este coloide suele ser normalmente partículas de sílice rodeadas por polivinilpolipirrolidona (PVP) y se suelen usar gradientes de dos densidades (45-90%) o tres (45-60-90%).

Esta estrategia aprovecha la diferencia de densidad de los diferentes componentes seminales y la movilidad y morfología de los espermatozoides. Los más móviles (tipo A y B) conseguirán atravesar más rápidamente las diferentes capas de los gradientes hasta situarse en el fondo, mientras que los tipo C y D junto con otros componentes seminales (restos celulares, plasma seminal) quedan en capas del gradiente superiores.

CENTRIFUGACION DEFERENCIA

Centrifugación diferencial: diferencia en la densidad de las moléculas. Esta diferencia debe ser grande pervada al centrifugar: Las partículas que posean densidades similares sedimentaraíficoiza como centrifugación preparativa para separar ponentes en la mezcla (por ejemplo, para separar mitocondrias de núcleos y membrana)útil para separar moléculas.

ULTRAFUGACION

Ultracentrifugación...: Permite estudiar las características de sedimentación de estructuras subcelulares (lisosomas, ribosomas y microsomas) y biomoléculas. Utiliza rotores (fijos o de columpio) y sistemas de monitoreo. Existen diferentes maneras de monitorear la sede las partículas en la ultracentrifugación, el más común de ellos mediante luz Uerfresones.

1 comentario:

  1. Hola compañera,,,,,,OJO con la ortografía, ....tiene algunos errores de dedo.........corrijalos por favor....nos vemos.

    ResponderEliminar